Tianyue Ou
My name is Tianyue Ou. I am a research scientist at Seed posttraining team.
I completed my master degree at LTI CMU, during which I worked on LLM agents, synthetic data, and LLM reasoning. I completed my bachelor’s degree in computer science from Johns Hopkins University.
I have worked on data synthesis for web/GUI agents, reasoning/agent benchmark, and multi-agent planning.
selected publications
- NeurIPSSynatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at ScaleTianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta, Dan Roth, Graham Neubig, and Shuyan ZhouNeurIPS, 2024
LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.
- ICLRHarnessing Webpage UIs for Text-Rich Visual UnderstandingJunpeng Liu, Tianyue Ou*, Yifan Song*, Yuxiao Qu*, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham Neubig, and Xiang YueICLR, 2025
Text-rich visual understanding-the ability to process environments where dense textual content is integrated with visuals-is crucial for multimodal large language models (MLLMs) to interact effectively with structured environments. To enhance this capability, we propose synthesizing general multimodal instructions from webpage UIs using text-based large language models (LLMs). Despite lacking direct visual input, text-based LLMs are able to process structured text representations from webpage accessibility trees. These instructions are then paired with UI screenshots to train multimodal models. We introduce MultiUI, a dataset containing 7.3 million samples from 1 million websites, covering diverse multimodal tasks and UI layouts. Models trained on MultiUI not only excel in web UI tasks-achieving up to a 48% improvement on VisualWebBench and a 19.1% boost in element accuracy on a web agent dataset Mind2Web-but also generalize surprisingly well to non-web UI tasks and even to non-UI domains, such as document understanding, OCR, and chart interpretation. These results highlight the broad applicability of web UI data for advancing text-rich visual understanding across various scenarios.
- preprintVisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain KnowledgeYueqi Song*, Tianyue Ou*, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang YueArXiv, 2025
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
- ICLRWebArena: A Realistic Web Environment for Building Autonomous AgentsShuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, and 2 more authorsICLR, 2023
With advances in generative AI, there is now potential for autonomous agents to manage daily tasks via natural language commands. However, current agents are primarily created and tested in simplified synthetic environments, leading to a disconnect with real-world scenarios. In this paper, we build an environment for language-guided agents that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on the web, and create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and designed to emulate tasks that humans routinely perform on the internet. We experiment with several baseline agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 14.41%, significantly lower than the human performance of 78.24%. These results highlight the need for further development of robust agents, that current state-of-the-art large language models are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress.